This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375823 #18 Sep 12 2024 15:09:49 %S A375823 0,1,3,6,16,43,107,271,695,1769,4499,11464,29202,74360,189382,482339, %T A375823 1228417,3128538,7967848,20292665,51681683,131623881,335222157, %U A375823 853749843,2174345679,5537663440,14103422412,35918853816,91478793556,232979863477,593357374127 %N A375823 Number of ways to tile a 3-row trapezoid of average length n with triangular and rectangular tiles, each of size 3. %C A375823 Here is the 3-row trapezoid of average length 6 (with 18 cells): %C A375823 ___ ___ ___ ___ ___ %C A375823 | | | | | | %C A375823 _|___|___|___|___|_ _|_ %C A375823 | | | | | | | %C A375823 _|___|___|___|___|_ _|___|_ %C A375823 | | | | | | | | %C A375823 |___|___|___|___|___|___|___|, %C A375823 and here are the two types of (triangular and rectangular) tiles of size 3, which can be rotated as needed: %C A375823 ___ %C A375823 | | %C A375823 _|___|_ ___________ %C A375823 | | | | | | | %C A375823 |___|___|, |___|___|___|. %C A375823 As an example, here is one of the a(6) = 107 ways to tile the 3-row trapezoid %C A375823 ___ ___ ___________ %C A375823 | | | | %C A375823 _| _|_ |___________|_ %C A375823 | | | | | | %C A375823 _| _| |_ |_ _| |_ %C A375823 | | | | | | %C A375823 |___|_______|___|___|_______|. %H A375823 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,4,-1,0,-1). %F A375823 a(n) = 2*a(n-1) + 4*a(n-3) - a(n-4) - a(n-6). %F A375823 G.f.: x*(1 + x)/((1 + x^2 - x^3)*(1 - 2*x - x^2 - x^3)). %F A375823 a(n) = (A077939(n) - A077961(n))/2. %t A375823 LinearRecurrence[{2, 0, 4, -1, 0, -1}, {0, 1, 3, 6, 16, 43}, 40] %Y A375823 Cf. A077939, A077961, A375821. %K A375823 nonn,easy %O A375823 0,3 %A A375823 _Greg Dresden_ and Mingjun Oliver Ouyang, Aug 30 2024