This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375824 #11 Sep 01 2024 18:41:01 %S A375824 36,45,153,171,351,630,1035,1431,2016,3240,3321,4005,8001,10440,13041, %T A375824 13203,16110,21321,23220,25200,101025,105111,114003,222111,320400, %U A375824 321201,1010331,1241100,1313010,1400301,2013021,2031120,2410110,4020030,10006101,11203011,20012301,32004000,32012001,33020001 %N A375824 Triangular numbers whose sum of digits is 9. %C A375824 Infinite subsequences include 2 * 10^(2*k) + 13 * 10^k + 21, 2 * 10^(2*k) + 31 * 10^k + 120, 32 * 10^(2*k) + 4 * 10^k, and 32 * 10^(2*k) + 12 * 10^k + 1. %C A375824 Conjecture: the last term not of one of those subsequences is a(53) = 210010000005. %H A375824 Robert Israel, <a href="/A375824/b375824.txt">Table of n, a(n) for n = 1..95</a> %e A375824 a(4) = 153 is a term because 153 = 17 * 18/2 is a triangular number and 1 + 5 + 3 = 9. %p A375824 F:= proc(d,s) option remember; %p A375824 # d-digit numbers with sum of digits s %p A375824 local R,i; %p A375824 R:= {}; %p A375824 for i from 0 to min(s,9) do %p A375824 R:= R union map(t -> 10*t+i, procname(d-1,s-i)) %p A375824 od; %p A375824 R %p A375824 end proc: %p A375824 F(1,0):= {}: %p A375824 for i from 1 to 9 do F(1,i):= {i} od: %p A375824 sort(convert(`union`(seq(select(t -> issqr(1+8*t), F(d,9)),d=1..12)),list)); %t A375824 Select[Range[10000](Range[10000]+1)/2,DigitSum[#]==9 &] (* _Stefano Spezia_, Sep 01 2024 *) %o A375824 (PARI) select(x->(sumdigits(x)==9), vector(10000, n, n*(n+1)/2)) \\ _Michel Marcus_, Aug 31 2024 %Y A375824 Intersection of A000217 and A052223. Contained in A117404 and A076713. %K A375824 nonn,base %O A375824 1,1 %A A375824 _Robert Israel_, Aug 30 2024