A375834 Lexicographically earliest sequence of positive integers such that for any n > 0, Sum_{k = 1..n} 1/(k*a(n+1-k)) < 1.
2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6
Offset: 1
Keywords
Examples
The first terms, alongside the corresponding sums, are: n a(n) Sum {k=1..n} 1/(k*a(n+1-k)) -- ---- --------------------------- 1 2 1/2 2 2 3/4 3 2 11/12 4 3 7/8 5 3 107/120 6 3 331/360 7 3 299/315 8 3 4931/5040 9 4 4651/5040 10 3 4993/5040 11 4 26219/27720 12 4 155389/166320 13 4 201613/216216 14 4 288793/308880 15 4 2031847/2162160
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
PARI
{ for (n = 1, #a = vector(87), a[n] = floor(1/(1-sum(k = 2, n, 1/(k*a[n+1-k])))) + 1; print1 (a[n]", ");); }
Comments