cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375838 Number of rooted chains starting with the cycle (1)(2)(3)...(n) in the permutation poset of [n].

This page as a plain text file.
%I A375838 #40 Jul 01 2025 17:14:50
%S A375838 1,1,2,9,83,1270,28799,906899,37866842,2024422837,134850653405,
%T A375838 10950546880152,1064840930492393,122158078221727119,
%U A375838 16325324374155336370,2514183676808883419043,442023695390488997377405,87989953715757624724243004,19688099473681895327628896249,4919839221134662388853128069571,1365091729320293490230304687026514
%N A375838 Number of rooted chains starting with the cycle (1)(2)(3)...(n) in the permutation poset of [n].
%H A375838 Vaclav Kotesovec, <a href="/A375838/b375838.txt">Table of n, a(n) for n = 0..260</a>
%F A375838 a(n) = Sum_{k=0..n} A375837(n,k).
%F A375838 a(n) = (A375836(n)+1)/2.
%F A375838 Conjecture: a(n) = R(n,0) where R(n,k) = (k+1) * (Sum_{i=0..n-1} R(n-1,i) + Sum_{j=0..k-1} R(n-1,j)) for 0 <= k < n, R(n,n) = 1. - _Mikhail Kurkov_, Jun 21 2025
%F A375838 a(n) ~ c * n!^2 / (2^n * log(2)^n * n^(1-log(2)/3)), where c = A385521 = 1.59585433050036621247006569740016516964502505848324064247941890934119103861277... - _Vaclav Kotesovec_, Jul 01 2025
%F A375838 a(n) = 1 + Sum_{k=1..n-1} abs(Stirling1(n,k))*a(k). - _Rajesh Kumar Mohapatra_, Jul 01 2025
%e A375838 Consider the set S = {1, 2, 3}. The a(3) = 1 + 5 + 3 = 9 in the poset of permutations of {1,2,3}:
%e A375838  |{(1)(2)(3)}| = 1;
%e A375838  |{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123), (1)(2)(3) < (132)}|=5;
%e A375838  |{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13)< (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
%p A375838 a:= proc(n) option remember;
%p A375838       1+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
%p A375838     end:
%p A375838 seq(a(n), n=0..20);  # _Alois P. Heinz_, Jul 01 2025
%t A375838 T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 01 2025, after A375837 *)
%Y A375838 Row sums of A375837.
%Y A375838 Cf. A048994, A331955, A330804, A331956, A331957, A375835, A375836.
%Y A375838 Cf. A385521.
%K A375838 nonn
%O A375838 0,3
%A A375838 _Rajesh Kumar Mohapatra_, Subhashree Sahoo, and Ranjan Kumar Dhani, Sep 10 2024