cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375847 The maximum exponent in the prime factorization of the largest unitary cubefree divisor of n.

This page as a plain text file.
%I A375847 #7 Aug 31 2024 15:16:24
%S A375847 0,1,1,2,1,1,1,0,2,1,1,2,1,1,1,0,1,2,1,2,1,1,1,1,2,1,0,2,1,1,1,0,1,1,
%T A375847 1,2,1,1,1,1,1,1,1,2,2,1,1,1,2,2,1,2,1,1,1,1,1,1,1,2,1,1,2,0,1,1,1,2,
%U A375847 1,1,1,2,1,1,2,2,1,1,1,1,0,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,2,2,2,1,1,1,1,1
%N A375847 The maximum exponent in the prime factorization of the largest unitary cubefree divisor of n.
%H A375847 Amiram Eldar, <a href="/A375847/b375847.txt">Table of n, a(n) for n = 1..10000</a>
%H A375847 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A375847 a(n) = A051903(A360539(n)).
%F A375847 a(n) = 0 if and only if n is cubefull (A036966).
%F A375847 a(n) = 1 if and only if n is in A337050 \ A036966.
%F A375847 a(n) = 2 if and only if n is in A038109.
%F A375847 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - A330596 = 1.25146474031763643535... .
%t A375847 a[n_] := Max[Join[{0}, Select[FactorInteger[n][[;; , 2]], # <= 2 &]]]; a[1] = 0; Array[a, 100]
%o A375847 (PARI) a(n) = {my(e = select(x -> x <= 2, factor(n)[,2])); if(#e == 0, 0, vecmax(e));}
%Y A375847 Cf. A004709, A036966, A038109, A051903, A330596, A337050, A360539.
%Y A375847 Cf. A007424 (analogous with the largest cubefree divisor, for n >= 2).
%K A375847 nonn,easy
%O A375847 1,4
%A A375847 _Amiram Eldar_, Aug 31 2024