cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375863 a(1) = 0 and a(n) = A050603(n-1)^2 for n > 0. Lexicographically earliest nonnegative sequence of integers such that the Gilbreath transform of a(1..n) gives floor(log_2(n)).

This page as a plain text file.
%I A375863 #60 Sep 02 2024 23:56:16
%S A375863 0,1,1,4,4,1,1,9,9,1,1,4,4,1,1,16,16,1,1,4,4,1,1,9,9,1,1,4,4,1,1,25,
%T A375863 25,1,1,4,4,1,1,9,9,1,1,4,4,1,1,16,16,1,1,4,4,1,1,9,9,1,1,4,4,1,1,36,
%U A375863 36,1,1,4,4,1,1,9,9,1,1,4,4,1,1,16,16,1,1,4,4,1,1,9,9,1,1,4,4,1,1,25
%N A375863 a(1) = 0 and a(n) = A050603(n-1)^2 for n > 0. Lexicographically earliest nonnegative sequence of integers such that the Gilbreath transform of a(1..n) gives floor(log_2(n)).
%e A375863 The first row is the sequence itself. The rows below are the absolute differences
%e A375863 of each previous row:
%e A375863 0, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, ...
%e A375863  1, 0, 3, 0, 3, 0, 8, 0, 8, 0, 3, 0, 3, 0, 15, 0, ...
%e A375863   1, 3, 3, 3, 3, 8, 8, 8, 8, 3, 3, 3, 3, 15, 15, ...
%e A375863    2, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 12, 0, ...
%e A375863     2, 0, 0, 5, 5, 0, 0, 5, 5, 0, 0, 12, 12, ...
%e A375863      2, 0, 5, 0, 5, 0, 5, 0, 5, 0, 12, 0, ...
%e A375863       2, 5, 5, 5, 5, 5, 5, 5, 5, 12, 12, ...
%e A375863        3, 0, 0, 0, 0, 0, 0, 0, 7, 0, ...
%e A375863         3, 0, 0, 0, 0, 0, 0, 7, 7, ...
%e A375863          3, 0, 0, 0, 0, 0, 7, 0, ...
%e A375863           3, 0, 0, 0, 0, 7, 7, ...
%e A375863            3, 0, 0, 0, 7, 0, ...
%e A375863             3, 0, 0, 7, 7, ...
%e A375863              3, 0, 7, 0, ...
%e A375863               3, 7, 7, ...
%e A375863                4, 0, ...
%e A375863                 4, ...
%e A375863 The main diagonal is floor(log_2(n)), where n = 1 in the first row and n = 2 in the second etc. .
%o A375863 (PARI) a(n) = if(n == 1, 0,valuation(n-(n-2)%2, 2)^2)
%Y A375863 Cf. A050603, A039963 (Gilbreath transform of floor(log_2(n))).
%K A375863 nonn
%O A375863 1,4
%A A375863 _Thomas Scheuerle_, Sep 02 2024