This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375876 #20 Feb 16 2025 08:34:07 %S A375876 1,2,10,76,790,10494,170396,3278174,73019522,1850066136,52577005426, %T A375876 1657084522790,57382017574920,2166149552961970,88550946187572482, %U A375876 3897682631534087692,183810990395243463198,9246950189455617225622,494332095588897164709644 %N A375876 E.g.f. satisfies A(x) = exp( 2 * (exp(x) - 1) * A(x)^(1/2) ). %H A375876 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A375876 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052880. %F A375876 E.g.f.: exp( - 2*LambertW(1 - exp(x)) ). %F A375876 a(n) = 2 * Sum_{k=0..n} (k+2)^(k-1) * Stirling2(n,k). %F A375876 a(n) ~ 2*sqrt(exp(1) + 1) * n^(n-1) / (exp(n-2) * (log(exp(1) + 1)-1)^(n - 1/2)). - _Vaclav Kotesovec_, Sep 06 2024 %o A375876 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2*lambertw(1-exp(x))))) %o A375876 (PARI) a(n) = 2*sum(k=0, n, (k+2)^(k-1)*stirling(n, k, 2)); %Y A375876 Cf. A052880, A375877. %K A375876 nonn %O A375876 0,2 %A A375876 _Seiichi Manyama_, Sep 01 2024