cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375877 E.g.f. satisfies A(x) = exp( 3 * (exp(x) - 1) * A(x)^(1/3) ).

This page as a plain text file.
%I A375877 #16 Feb 16 2025 08:34:07
%S A375877 1,3,18,156,1785,25506,438540,8834013,204341580,5343030264,
%T A375877 155949552951,5028857184588,177628447077408,6822752257361943,
%U A375877 283211285330197254,12636574861035192648,603220473535136763441,30679940004725753797230
%N A375877 E.g.f. satisfies A(x) = exp( 3 * (exp(x) - 1) * A(x)^(1/3) ).
%H A375877 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A375877 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A052880.
%F A375877 E.g.f.: exp( - 3*LambertW(1 - exp(x)) ).
%F A375877 a(n) = 3 * Sum_{k=0..n} (k+3)^(k-1) * Stirling2(n,k).
%o A375877 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-3*lambertw(1-exp(x)))))
%o A375877 (PARI) a(n) = 3*sum(k=0, n, (k+3)^(k-1)*stirling(n, k, 2));
%Y A375877 Cf. A052880, A375876.
%K A375877 nonn
%O A375877 0,2
%A A375877 _Seiichi Manyama_, Sep 01 2024