This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375879 #14 Aug 27 2025 04:22:11 %S A375879 1,3,18,159,1860,27180,477702,9830814,232182024,6195709008, %T A375879 184478436720,6066613989216,218468134274904,8553367426018896, %U A375879 361834389120925224,16450660929420051480,800070438821317486272,41453084674400350385664 %N A375879 E.g.f. satisfies A(x) = 1/(1 - x)^(3*A(x)^(1/3)). %H A375879 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A375879 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A052813. %F A375879 E.g.f.: exp( - 3*LambertW(log(1 - x)) ). %F A375879 a(n) = 3 * Sum_{k=0..n} (k+3)^(k-1) * |Stirling1(n,k)|. %F A375879 a(n) ~ 3 * n^(n-1) * exp(7/2 + n*exp(-1) - n) / (exp(exp(-1)) - 1)^(n - 1/2). - _Vaclav Kotesovec_, Aug 27 2025 %o A375879 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-3*lambertw(log(1-x))))) %o A375879 (PARI) a(n) = 3*sum(k=0, n, (k+3)^(k-1)*abs(stirling(n, k, 1))); %Y A375879 Cf. A052813, A375878. %K A375879 nonn,changed %O A375879 0,2 %A A375879 _Seiichi Manyama_, Sep 01 2024