cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375887 Decimal expansion of Product_{n>=2} zeta(n)^n.

This page as a plain text file.
%I A375887 #22 Sep 02 2024 17:41:22
%S A375887 9,7,6,6,8,2,5,8,2,1,4,5,3,2,8,9,6,9,9,2,3,0,6,8,2,6,9,5,6,4,0,7,9,2,
%T A375887 1,6,2,0,2,8,9,8,7,9,5,0,9,6,7,2,8,0,9,2,8,4,8,8,8,3,3,0,5,1,4,0,0,2,
%U A375887 2,7,0,8,9,8,0,3,6,0,4,4,8,7,1,3,8,6,8,0,9,7,3,8,3,4,9,2,6,2,5,6,5,5,0,2,5,7,9,3,0,8,4,9,0,2,8,7,8,3,9,6,9,3,2,2,2,9,6,4,7,3
%N A375887 Decimal expansion of Product_{n>=2} zeta(n)^n.
%C A375887 It is interesting to note that this product is very close in value to 3 * Sum_{n>=2} (zeta(n)^n-1), A375920, where that factor's first 30 digits are: 3.00012312615292744064909403341.
%e A375887 9.766825821453289699230682695640792162028987950967280928488833051400227...
%p A375887 evalf(Product(Zeta(n)^n, n = 2 .. infinity), 150); # _Vaclav Kotesovec_, Sep 02 2024
%t A375887 RealDigits[N[Product[Zeta[n]^n, {n, 2, 500}], 150]][[1]]
%o A375887 (PARI) prodinf(k = 2, zeta(k)^k) \\ _Amiram Eldar_, Sep 02 2024
%Y A375887 Cf. A375920,(Sum_{n>=2} (zeta(n)^n-1)), A021002 (Product_{n>=2} zeta(n)), A093720 (Sum_{n >= 2} zeta(n)/n!), A013661 (zeta(2)).
%K A375887 nonn,cons
%O A375887 1,1
%A A375887 _Richard R. Forberg_, Sep 01 2024