This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375888 #13 Sep 12 2024 20:00:58 %S A375888 1,2,5,4,10,3,8,20,6,17,16,21,12,34,11,32,40,13,35,22,7,64,42,24,68, %T A375888 23,14,9,128,80,26,69,44,15,18,25,256,84,48,70,45,28,19,49,33,512,85, %U A375888 52,75,46,29,36,50,65,43,1024,160,53,136,88,30,37,51,66,86,57 %N A375888 Rectangular array: row n shows all k such that n is the number of rises in the trajectory of k in the Collatz problem. %C A375888 Assuming that the Collatz conjecture (also known as the 3x+1 conjecture) is true, this is a permutation of the positive integers; viz., every positive integer occurs exactly once. Conjecture: every row contains a pair of consecutive integers. %H A375888 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %F A375888 Transpose of the array in A354236. %e A375888 Corner: %e A375888 1 2 4 8 16 32 64 128 256 512 1024 %e A375888 5 10 20 21 40 42 80 84 85 160 168 %e A375888 3 6 12 13 24 26 48 52 53 96 104 %e A375888 17 34 35 68 69 70 75 136 138 140 141 %e A375888 11 22 23 44 45 46 88 90 92 93 176 %e A375888 7 14 15 28 29 30 56 58 60 61 112 %e A375888 9 18 19 36 37 38 72 74 76 77 81 %e A375888 6 is in row 2 because the trajectory, (6, 3, 10, 5, 16, 4, 2, 1), has exactly 2 rises: 3 to 10, and 5 to 16. %t A375888 t = Table[Count[Differences[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]], _? Positive], {n, 2048}]; (* after _Harvey P. Dale_, A006667 *) %t A375888 r[n_] := Flatten[Position[t, n - 1]]; %t A375888 Column[Table[r[n], {n, 1, 21}]] (* array *) %t A375888 u = Table[r[k][[n + 1 - k]], {n, 1, 12}, {k, 1, n}] %t A375888 Flatten[u] (* sequence *) %Y A375888 Cf. A000027, A000079 (row 1), A092893 (column 1), A006667, A070265, A078719. %Y A375888 Cf. A354236. %K A375888 nonn,tabl %O A375888 0,2 %A A375888 _Clark Kimberling_, Sep 11 2024