cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375898 E.g.f. satisfies A(x) = 1 / (2 - exp(x * A(x)^(1/3)))^3.

This page as a plain text file.
%I A375898 #10 Sep 02 2024 08:38:12
%S A375898 1,3,21,234,3627,72498,1780953,52013118,1762754655,68060512458,
%T A375898 2950869169125,142006584810918,7513205987292243,433548334132153698,
%U A375898 27102592662130603857,1824854382978573444174,131676307468686605671623,10137713081262046098901050
%N A375898 E.g.f. satisfies A(x) = 1 / (2 - exp(x * A(x)^(1/3)))^3.
%F A375898 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A052894.
%F A375898 E.g.f.: A(x) = ( (1/x) * Series_Reversion(x * (2 - exp(x))) )^3.
%F A375898 a(n) = (3/(n+3)!) * Sum_{k=0..n} (n+k+2)! * Stirling2(n,k).
%o A375898 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(2-exp(x)))/x)^3))
%o A375898 (PARI) a(n) = 3*sum(k=0, n, (n+k+2)!*stirling(n, k, 2))/(n+3)!;
%Y A375898 Cf. A052894, A375897.
%Y A375898 Cf. A226515.
%K A375898 nonn
%O A375898 0,2
%A A375898 _Seiichi Manyama_, Sep 01 2024