cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375900 E.g.f. satisfies A(x) = 1 / (1 + log(1 - x * A(x)^(1/3)))^3.

This page as a plain text file.
%I A375900 #12 Sep 02 2024 08:38:20
%S A375900 1,3,21,237,3738,76212,1912350,57099816,1979628552,78224586240,
%T A375900 3472089084072,171098204829120,9271248509444544,548011290335056272,
%U A375900 35095593433694127696,2421035179995679335360,178997036386314294247680,14121215676864610247122560
%N A375900 E.g.f. satisfies A(x) = 1 / (1 + log(1 - x * A(x)^(1/3)))^3.
%F A375900 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A052802.
%F A375900 E.g.f.: A(x) = ( (1/x) * Series_Reversion(x * (1 + log(1-x))) )^3.
%F A375900 a(n) = (3/(n+3)!) * Sum_{k=0..n} (n+k+2)! * |Stirling1(n,k)|.
%o A375900 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(1+log(1-x)))/x)^3))
%o A375900 (PARI) a(n) = 3*sum(k=0, n, (n+k+2)!*abs(stirling(n, k, 1)))/(n+3)!;
%Y A375900 Cf. A052802, A375899.
%Y A375900 Cf. A354122.
%K A375900 nonn
%O A375900 0,2
%A A375900 _Seiichi Manyama_, Sep 01 2024