cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375901 Decimal expansion of the triple integral of {x/y}{y/z}{z/x} over the unit cube.

This page as a plain text file.
%I A375901 #9 Sep 04 2024 10:22:32
%S A375901 0,9,5,8,5,0,1,7,4,9,1,3,3,7,9,5,2,5,6,7,8,5,3,6,1,9,8,5,9,6,3,3,5,3,
%T A375901 7,0,0,9,9,4,7,9,4,8,5,2,0,4,9,2,3,5,3,9,8,1,4,3,0,1,7,0,7,4,8,1,6,1,
%U A375901 3,5,6,9,5,5,5,3,6,6,7,1,2,5,7,5,1,7,5
%N A375901 Decimal expansion of the triple integral of {x/y}{y/z}{z/x} over the unit cube.
%H A375901 Cornel Ioan Vălean, <a href="https://ia601603.us.archive.org/20/items/1.pdf_almost/1.pdf.pdf">(Almost) Impossible Integrals, Sums, and Series</a>, Springer (2019), p. viii.
%F A375901 Integral_{0..1} Integral_{0..1} Integral_{0..1} {x/y}*{y/z}*{z/x} dx dy dz, where {w} is the fractional part of w.
%F A375901 Vălean shows that this is equal to 1 - 3/4 * zeta(2) + 1/6 * zeta(2) * zeta(3).
%e A375901 0.095850174913379525678536198596335370099479485204923539814301707481613569555....
%t A375901 RealDigits[1 + (Zeta[3]/6 - 3/4) * Zeta[2], 10, 120, -1][[1]] (* _Amiram Eldar_, Sep 03 2024 *)
%o A375901 (PARI) 1-.75*zeta(2)+zeta(2)*zeta(3)/6
%Y A375901 Cf. A002117, A013661, A183699.
%K A375901 nonn,cons
%O A375901 0,2
%A A375901 _Charles R Greathouse IV_, Sep 01 2024