cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375904 E.g.f. satisfies A(x) = (1 - log(1 - x * A(x)^(1/2)))^2.

This page as a plain text file.
%I A375904 #8 Sep 02 2024 08:38:34
%S A375904 1,2,8,52,482,5868,88916,1616032,34300584,833331600,22815541872,
%T A375904 695254540704,23343144376944,856304206749600,34078074674281920,
%U A375904 1462430515496217600,67322828681189917440,3309486192768294286848,173034403244058605806080
%N A375904 E.g.f. satisfies A(x) = (1 - log(1 - x * A(x)^(1/2)))^2.
%F A375904 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A138013.
%F A375904 E.g.f.: A(x) = ( (1/x) * Series_Reversion(x / (1 - log(1-x))) )^2.
%F A375904 a(n) = 2 * (n+1)! * Sum_{k=0..n} |Stirling1(n,k)|/(n-k+2)!.
%o A375904 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x/(1-log(1-x)))/x)^2))
%o A375904 (PARI) a(n) = 2*(n+1)!*sum(k=0, n, abs(stirling(n, k, 1))/(n-k+2)!);
%Y A375904 Cf. A138013, A375905.
%K A375904 nonn
%O A375904 0,2
%A A375904 _Seiichi Manyama_, Sep 02 2024