This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375908 #14 Sep 20 2024 06:26:47 %S A375908 18446,39766,74306,83434,94106,100346,107966,111154,111814,113366, %T A375908 140834,144754,145606,146014,147406,149854,154946,155702,156146, %U A375908 165346,171786,189034,190618,191806,197354,201686,203314,206194,211394,211946,219386,231286,234394,253114,258266,262294,263966 %N A375908 Sphenic numbers that are sandwiched between products of exactly 4 distinct primes (or tetraprimes). %C A375908 Terms are of the form 4*k+2. %e A375908 18446 = 2 * 23 * 401 (between 18445 = 5*7*17*31 and 18447 = 3*11*13*43). %e A375908 39766 = 2 * 59 * 337 (between 39765 = 3*5*11*241 and 39767 = 7*13*19*23). %e A375908 74306 = 2 * 53 * 701 (between 74305 = 5*7*11*193 and 74307 = 3*17*31*47). %p A375908 N:= 5*10^5: # for terms <= N %p A375908 P:= select(isprime,[seq(i,i=3..N/3,2)]): nP:= nops(P): %p A375908 R:= NULL: %p A375908 for i from 1 to nP while 2*P[i]*P[i+1] <= N do %p A375908 for j from i+1 to nP do %p A375908 x:= 2*P[i]*P[j]; %p A375908 if x > N then break fi; %p A375908 if numtheory:-bigomega(x-1) = 4 and numtheory:-bigomega(x+1) = 4 and %p A375908 numtheory:-issqrfree(x-1) and numtheory:-issqrfree(x+1) then %p A375908 R:= R,x %p A375908 fi %p A375908 od od: %p A375908 sort([R]); # _Robert Israel_, Sep 02 2024 %t A375908 e[n_] := FactorInteger[n][[;; , 2]]; SequencePosition[e /@ Range[300000], {{1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1}}][[;; , 1]] + 1 (* _Amiram Eldar_, Sep 02 2024 *) %Y A375908 Cf. A007304, A046386. Subsequence of A075819. %K A375908 nonn %O A375908 1,1 %A A375908 _Massimo Kofler_, Sep 02 2024