This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375913 #10 Sep 03 2024 01:16:16 %S A375913 1,2,6,24,114,606,3494,21434,138100,926008,6418576,45755516,334117246, %T A375913 2491317430,18919957430,146034939362,1143606856808,9072734766636, %U A375913 72827462660824,590852491725920,4840436813758832,40009072880216344,333419662183186932,2799687668599080296 %N A375913 Number of strong (=generic) guillotine rectangulations with n rectangles. %C A375913 Equivalently: The number of strong rectangulations with n rectangles that avoid two windmill patterns. %H A375913 Andrei Asinowski, Jean Cardinal, Stefan Felsner, and Éric Fusy, <a href="https://arxiv.org/abs/2402.01483">Combinatorics of rectangulations: Old and new bijections</a>, arXiv:2402.01483 [math.CO], 2024, page 37. %H A375913 Arturo Merino and Torsten Mütze, <a href="https://doi.org/10.1007/s00454-022-00393-w">Combinatorial generation via permutation languages. III. Rectangulations</a>, Discrete Comput. Geom., 70(1):51-122, 2023. Page 99, Table 3, entry "12". %F A375913 A 5-variate recurrence is given in the paper Asinowski, Cardinal, Felsner, and Fusy. %Y A375913 Cf. A342141 (number of strong (=generic) rectangulations). %Y A375913 Cf. A001181 (Baxter numbers: number of weak (=diagonal) rectangulations). %Y A375913 Cf. A006318 (Schröder numbers: number of weak (=diagonal) guillotine rectangulations). %K A375913 nonn %O A375913 1,2 %A A375913 _Andrei Asinowski_, Sep 02 2024