A375914 Base-5 Euler-Jacobi pseudoprimes: odd composite k coprime to 5 such that 5^((k-1)/2) == (5/k) (mod n), where (5/k) is the Jacobi symbol (or Kronecker symbol).
781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 121463, 133141
Offset: 1
Keywords
Examples
781 is a term because 781 = 11*71 is composite, (5/781) = 1, and 5^((781-1)/2) == 1 (mod 781). 7813 is a term because 7813 = 13*601 is composite, (5/7813) = -1, and 5^((7813-1)/2) == -1 (mod 7813).
Links
- Jianing Song, Table of n, a(n) for n = 1..1000
Crossrefs
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
Programs
-
PARI
isA375914(k) = k>1 && !isprime(k) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==kronecker(5,k)