This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375915 #20 Sep 07 2024 16:03:49 %S A375915 781,1541,1729,5461,5611,6601,7449,11041,12801,13021,14981,15751, %T A375915 15841,21361,24211,25351,29539,38081,40501,41041,44801,47641,53971, %U A375915 67921,75361,79381,90241,100651,102311,104721,106201,106561,112141,113201,115921,133141,135201,141361 %N A375915 Composite numbers k == 1, 9 (mod 10) such that 5^((k-1)/2) == 1 (mod k). %C A375915 Odd composite numbers k such that 5^((k-1)/2) == (5/k) = 1 (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol). %H A375915 Jianing Song, <a href="/A375915/b375915.txt">Table of n, a(n) for n = 1..1000</a> %e A375915 29539 is a term because 29539 = 109*271 is composite, 29539 == 9 (mod 10), and 5^((29539-1)/2) == 1 (mod 29539). %o A375915 (PARI) isA375915(k) = (k>1) && !isprime(k) && (k%10==1 || k%10==9) && Mod(5,k)^((k-1)/2) == 1 %Y A375915 | b=2 | b=3 | b=5 | %Y A375915 -----------------------------------+-------------------+---------+----------+ %Y A375915 (b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | this seq | %Y A375915 -----------------------------------+-------------------+---------+----------+ %Y A375915 (b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 | %Y A375915 -----------------------------------+-------------------+---------+----------+ %Y A375915 b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 | %Y A375915 (b/k)=-1, b^((k-1)/2)==1 (mod k) | | | | %Y A375915 -----------------------------------+-------------------+---------+----------+ %Y A375915 Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 | %Y A375915 (union of first two) | | | | %Y A375915 -----------------------------------+-------------------+---------+----------+ %Y A375915 Euler pseudoprimes | A006970 | A262051 | A262052 | %Y A375915 (union of all three) | | | | %K A375915 nonn %O A375915 1,1 %A A375915 _Jianing Song_, Sep 02 2024