This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375916 #19 Sep 07 2024 16:03:53 %S A375916 7813,121463,195313,216457,315283,319507,353827,555397,559903,753667, %T A375916 939727,1164083,1653667,1663213,1703677,1809697,1958503,2255843, %U A375916 2339377,2423323,2942333,2987167,3313643,4265257,4635053,5376463,5979247,6611977,7784297,7859707 %N A375916 Composite numbers k == 3, 7 (mod 10) such that 5^((k-1)/2) == -1 (mod k). %C A375916 Odd composite numbers k such that 5^((k-1)/2) == (5/k) = -1 (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol). %H A375916 Jianing Song, <a href="/A375916/b375916.txt">Table of n, a(n) for n = 1..1000</a> %e A375916 216457 is a term because 216457 = 233*929 is a composite, 216457 == 7 (mod 10), and 5^((216457-1)/2) == -1 (mod 216457). %o A375916 (PARI) isA375916(k) = !isprime(k) && (k%10==3 || k%10==7) && Mod(5,k)^((k-1)/2) == -1 %Y A375916 | b=2 | b=3 | b=5 | %Y A375916 -----------------------------------+-------------------+---------+----------+ %Y A375916 (b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 | %Y A375916 -----------------------------------+-------------------+---------+----------+ %Y A375916 (b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | this seq | %Y A375916 -----------------------------------+-------------------+---------+----------+ %Y A375916 b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 | %Y A375916 (b/k)=-1, b^((k-1)/2)==1 (mod k) | | | | %Y A375916 -----------------------------------+-------------------+---------+----------+ %Y A375916 Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 | %Y A375916 (union of first two) | | | | %Y A375916 -----------------------------------+-------------------+---------+----------+ %Y A375916 Euler pseudoprimes | A006970 | A262051 | A262052 | %Y A375916 (union of all three) | | | | %K A375916 nonn %O A375916 1,1 %A A375916 _Jianing Song_, Sep 02 2024