This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375917 #18 Sep 07 2024 16:03:28 %S A375917 121,1729,2821,7381,8401,10585,15457,15841,18721,19345,23521,24661, %T A375917 28009,29341,31621,41041,46657,47197,49141,50881,52633,55969,63973, %U A375917 74593,75361,82513,87913,88573,93961,111361,112141,115921,125665,126217,138481,148417,172081 %N A375917 Composite numbers k == 1, 11 (mod 12) such that 3^((k-1)/2) == 1 (mod k). %C A375917 Odd composite numbers k such that 3^((k-1)/2) == (3/k) = 1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol). %C A375917 It seems that most terms are congruent to 1 modulo 12. The first terms congruent to 11 modulo 12 are 1683683, 1898999, 2586083, 2795519, 4042403, 4099439, 5087171, 8243111, ... %H A375917 Jianing Song, <a href="/A375917/b375917.txt">Table of n, a(n) for n = 1..1000</a> %e A375917 1683683 is a term because 1683683 = 59*28537 is composite, 1683683 == 11 (mod 12), and 3^((1683683-1)/2) == 1 (mod 1683683). %o A375917 (PARI) isA375917(k) = (k>1) && !isprime(k) && (k%12==1 || k%12==11) && Mod(3,k)^((k-1)/2) == 1 %Y A375917 | b=2 | b=3 | b=5 | %Y A375917 -----------------------------------+-------------------+----------+---------+ %Y A375917 (b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | this seq | A375915 | %Y A375917 -----------------------------------+-------------------+----------+---------+ %Y A375917 (b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 | %Y A375917 -----------------------------------+-------------------+----------+---------+ %Y A375917 b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 | %Y A375917 (b/k)=-1, b^((k-1)/2)==1 (mod k) | | | | %Y A375917 -----------------------------------+-------------------+----------+---------+ %Y A375917 Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 | %Y A375917 (union of first two) | | | | %Y A375917 -----------------------------------+-------------------+----------+---------+ %Y A375917 Euler pseudoprimes | A006970 | A262051 | A262052 | %Y A375917 (union of all three) | | | | %K A375917 nonn %O A375917 1,1 %A A375917 _Jianing Song_, Sep 02 2024