This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375918 #18 Sep 07 2024 16:03:24 %S A375918 703,1891,3281,8911,12403,16531,44287,63139,79003,97567,105163,152551, %T A375918 182527,188191,211411,218791,288163,313447,320167,364231,385003, %U A375918 432821,453259,497503,563347,638731,655051,658711,801139,859951,867043,973241,994507,1024651,1097227 %N A375918 Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k). %C A375918 Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol). %H A375918 Jianing Song, <a href="/A375918/b375918.txt">Table of n, a(n) for n = 1..1000</a> %e A375918 3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281). %o A375918 (PARI) isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3,k)^((k-1)/2) == -1 %Y A375918 | b=2 | b=3 | b=5 | %Y A375918 -----------------------------------+-------------------+----------+---------+ %Y A375918 (b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 | %Y A375918 -----------------------------------+-------------------+----------+---------+ %Y A375918 (b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | this seq | A375916 | %Y A375918 -----------------------------------+-------------------+----------+---------+ %Y A375918 b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 | %Y A375918 (b/k)=-1, b^((k-1)/2)==1 (mod k) | | | | %Y A375918 -----------------------------------+-------------------+----------+---------+ %Y A375918 Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 | %Y A375918 (union of first two) | | | | %Y A375918 -----------------------------------+-------------------+----------+---------+ %Y A375918 Euler pseudoprimes | A006970 | A262051 | A262052 | %Y A375918 (union of all three) | | | | %K A375918 nonn %O A375918 1,1 %A A375918 _Jianing Song_, Sep 02 2024