cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375920 Decimal expansion of Sum_{n>=2} (zeta(n)^n - 1).

This page as a plain text file.
%I A375920 #22 Mar 30 2025 06:32:23
%S A375920 3,2,5,5,4,7,4,9,9,5,7,8,0,3,6,9,2,6,2,0,9,4,3,6,8,6,6,5,0,6,9,0,1,5,
%T A375920 1,3,8,0,7,5,2,8,2,6,4,3,8,0,3,3,9,7,5,8,5,3,4,1,8,5,9,2,7,2,2,6,5,7,
%U A375920 2,0,2,5,8,8,1,5,9,5,6,1,3,8,4,6,8,6,2,3,8,2,9,5,0,2,9,3,8,0,0,3
%N A375920 Decimal expansion of Sum_{n>=2} (zeta(n)^n - 1).
%C A375920 It is interesting to note that this sum is very close in value to 1/3 of Product_{n>=2} zeta(n)^n, A375887, where that factor's first 30 digits are: 0.333319653211135001436063576617.
%e A375920 3.255474995780369262094368665069015138075282643803397585341859272265720258...
%p A375920 evalf(Sum(Zeta(n)^n - 1, n = 2 .. infinity), 120); # _Vaclav Kotesovec_, Sep 02 2024
%t A375920 RealDigits[N[Sum[Zeta[n]^n - 1, {n, 2, 1000}], 150]][[1]]
%Y A375920 Cf. A375887 (Product_{n>=2} zeta(n)^n), A021002 (Product_{n>2} zeta(n)), A093720 (Sum_{n>=2} zeta(n)/n!), A013661 (zeta(2)).
%K A375920 nonn,cons
%O A375920 1,1
%A A375920 _Richard R. Forberg_, Sep 02 2024