cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375929 Numbers k such that A002808(k+1) = A002808(k) + 1. In other words, the k-th composite number is 1 less than the next.

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

Positions of 1's in A073783 (see also A054546, A065310).

Examples

			The composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after positions 3, 4, 7, 8, ...
		

Crossrefs

Positions in A002808 of each element of A068780.
The complement is A065890 shifted.
First differences are A373403 (except first).
The version for non-prime-powers is A375713, differences A373672.
The version for prime-powers is A375734, differences A373671.
The version for non-perfect-powers is A375740.
The version for nonprime numbers is A375926.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A002808 lists the composite numbers, differences A073783.
A018252 lists the nonprime numbers, differences A065310.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],CompositeQ]],1]
  • Python
    from sympy import primepi
    def A375929(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+bisection(lambda y:primepi(x+2+y))-2
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        pic, prevc = 0, -1
        for i in count(4):
            if not isprime(i):
                if i == prevc + 1:
                    yield pic
                pic, prevc = pic+1, i
    print(list(islice(agen(), 10000))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = A375926(n) - 1.