A375929 Numbers k such that A002808(k+1) = A002808(k) + 1. In other words, the k-th composite number is 1 less than the next.
3, 4, 7, 8, 11, 12, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
Offset: 1
Keywords
Examples
The composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after positions 3, 4, 7, 8, ...
Crossrefs
Programs
-
Mathematica
Join@@Position[Differences[Select[Range[100],CompositeQ]],1]
-
Python
from sympy import primepi def A375929(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+bisection(lambda y:primepi(x+2+y))-2 return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
-
Python
# faster for initial segment of sequence from sympy import isprime from itertools import count, islice def agen(): # generator of terms pic, prevc = 0, -1 for i in count(4): if not isprime(i): if i == prevc + 1: yield pic pic, prevc = pic+1, i print(list(islice(agen(), 10000))) # Michael S. Branicky, Sep 17 2024
Formula
a(n) = A375926(n) - 1.
Comments