cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375937 Odd numbers which are the largest odd number in their Collatz trajectory.

This page as a plain text file.
%I A375937 #15 Sep 05 2024 14:13:52
%S A375937 1,5,13,17,21,29,33,37,45,49,53,61,65,69,77,81,85,93,101,113,117,133,
%T A375937 141,149,157,173,177,181,197,205,209,213,229,237,241,245,261,269,273,
%U A375937 277,289,301,305,309,317,321,325,341,349,357,369,373,385,397,401,405
%N A375937 Odd numbers which are the largest odd number in their Collatz trajectory.
%C A375937 a(n) == 1 (mod 4) because the trajectory of 4x+3 is (4x+3, 12x+10, 6x+5, ...) and 6x+5 > 4x+3.
%H A375937 Markus Sigg, <a href="/A375937/b375937.txt">Table of n, a(n) for n = 1..10000</a>
%F A375937 a(n) = (A176869(n) - 1) / 3 for n > 1.
%e A375937 The odd elements of the Collatz trajectory (3,10,5,16,8,4,2,1) are {3,5,1} with maximum 5 > 3, so 3 is not a term. The odd elements of the Collatz trajectory (13,40,20,10,5,16,8,4,2,1) are {13,5,1} with maximum 13, so 13 is a term.
%o A375937 (PARI)
%o A375937 makeEntries(count) = {
%o A375937     my(L = List(), k = 1);
%o A375937     while(#L < count,
%o A375937         my(m = k);
%o A375937         while(m > 1 && m <= k,
%o A375937             m = 3*m + 1;
%o A375937             while(m % 2 == 0, m = m / 2);
%o A375937         );
%o A375937         if(m == 1, listput(L, k));
%o A375937         k += 2
%o A375937     );
%o A375937     L
%o A375937 };
%o A375937 print(Vec(makeEntries(56)));
%Y A375937 Cf. A033496, A176869.
%K A375937 nonn
%O A375937 1,2
%A A375937 _Markus Sigg_, Sep 03 2024