This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375937 #15 Sep 05 2024 14:13:52 %S A375937 1,5,13,17,21,29,33,37,45,49,53,61,65,69,77,81,85,93,101,113,117,133, %T A375937 141,149,157,173,177,181,197,205,209,213,229,237,241,245,261,269,273, %U A375937 277,289,301,305,309,317,321,325,341,349,357,369,373,385,397,401,405 %N A375937 Odd numbers which are the largest odd number in their Collatz trajectory. %C A375937 a(n) == 1 (mod 4) because the trajectory of 4x+3 is (4x+3, 12x+10, 6x+5, ...) and 6x+5 > 4x+3. %H A375937 Markus Sigg, <a href="/A375937/b375937.txt">Table of n, a(n) for n = 1..10000</a> %F A375937 a(n) = (A176869(n) - 1) / 3 for n > 1. %e A375937 The odd elements of the Collatz trajectory (3,10,5,16,8,4,2,1) are {3,5,1} with maximum 5 > 3, so 3 is not a term. The odd elements of the Collatz trajectory (13,40,20,10,5,16,8,4,2,1) are {13,5,1} with maximum 13, so 13 is a term. %o A375937 (PARI) %o A375937 makeEntries(count) = { %o A375937 my(L = List(), k = 1); %o A375937 while(#L < count, %o A375937 my(m = k); %o A375937 while(m > 1 && m <= k, %o A375937 m = 3*m + 1; %o A375937 while(m % 2 == 0, m = m / 2); %o A375937 ); %o A375937 if(m == 1, listput(L, k)); %o A375937 k += 2 %o A375937 ); %o A375937 L %o A375937 }; %o A375937 print(Vec(makeEntries(56))); %Y A375937 Cf. A033496, A176869. %K A375937 nonn %O A375937 1,2 %A A375937 _Markus Sigg_, Sep 03 2024