This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375945 #13 Sep 06 2024 06:24:52 %S A375945 1,3,18,156,1758,24342,399480,7577700,163090500,3926104860, %T A375945 104520733560,3048811591680,96695722690200,3312942954681240, %U A375945 121938065727180480,4798400761979259120,201030443703421854480,8933622147642363338160,419725992843354254228640 %N A375945 Expansion of e.g.f. 1 / (1 + 2 * log(1 - x))^(3/2). %F A375945 a(n) = Sum_{k=0..n} A001147(k+1) * |Stirling1(n,k)|. %F A375945 a(n) ~ n^(n+1) / (exp(n/2) * (exp(1/2) - 1)^(n + 3/2)). - _Vaclav Kotesovec_, Sep 06 2024 %t A375945 nmax=18; CoefficientList[Series[1 / (1 + 2 * Log[1 - x])^(3/2),{x,0,nmax}],x]*Range[0,nmax]! (* _Stefano Spezia_, Sep 03 2024 *) %o A375945 (PARI) a001147(n) = prod(k=0, n-1, 2*k+1); %o A375945 a(n) = sum(k=0, n, a001147(k+1)*abs(stirling(n, k, 1))); %Y A375945 Cf. A052801, A375946. %Y A375945 Cf. A088500, A367474, A367475, A375953. %Y A375945 Cf. A001147. %K A375945 nonn %O A375945 0,2 %A A375945 _Seiichi Manyama_, Sep 03 2024