cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375946 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(4/3).

This page as a plain text file.
%I A375946 #13 Sep 03 2024 12:14:04
%S A375946 1,4,32,372,5652,105936,2360712,60956472,1789413864,58850914752,
%T A375946 2143354213728,85629122177760,3723269780412000,175035687610956480,
%U A375946 8846458578801144000,478330017277120767360,27551501517174431852160,1684176901225092936990720
%N A375946 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(4/3).
%F A375946 a(n) = Sum_{k=0..n} A007559(k+1) * |Stirling1(n,k)|.
%t A375946 nmax=17; CoefficientList[Series[1 / (1 + 3 * Log[1-x])^(4/3),{x,0,nmax}],x]*Range[0,nmax]! (* _Stefano Spezia_, Sep 03 2024 *)
%o A375946 (PARI) a007559(n) = prod(k=0, n-1, 3*k+1);
%o A375946 a(n) = sum(k=0, n, a007559(k+1)*abs(stirling(n, k, 1)));
%Y A375946 Cf. A052801, A375945.
%Y A375946 Cf. A354263, A365575, A375951.
%Y A375946 Cf. A007559.
%K A375946 nonn
%O A375946 0,2
%A A375946 _Seiichi Manyama_, Sep 03 2024