cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375947 Expansion of e.g.f. 1 / (1 + 4 * log(1 - x))^(3/2).

This page as a plain text file.
%I A375947 #11 Sep 03 2024 12:14:19
%S A375947 1,6,66,1032,20856,516384,15129600,511880160,19637499360,842285112000,
%T A375947 39939749040960,2074625404323840,117151213971202560,
%U A375947 7145371319204666880,468138620331976343040,32788234887866638709760,2444773199922430356833280
%N A375947 Expansion of e.g.f. 1 / (1 + 4 * log(1 - x))^(3/2).
%F A375947 a(n) = Sum_{k=0..n} A000407(k) * |Stirling1(n,k)|.
%t A375947 nmax=16; CoefficientList[Series[1 / (1 + 4 * Log[1-x])^(3/2),{x,0,nmax}],x]*Range[0,nmax]! (* _Stefano Spezia_, Sep 03 2024 *)
%o A375947 (PARI) a000407(n) = (2*n+1)!/n!;
%o A375947 a(n) = sum(k=0, n, a000407(k)*abs(stirling(n, k, 1)));
%Y A375947 Cf. A000407, A354241, A375950.
%K A375947 nonn
%O A375947 0,2
%A A375947 _Seiichi Manyama_, Sep 03 2024