cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375951 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(5/3).

This page as a plain text file.
%I A375951 #12 Sep 03 2024 12:14:01
%S A375951 1,5,45,570,9270,183840,4299360,115795920,3528915840,120032889840,
%T A375951 4507313333040,185185602462240,8262852630732000,397873645339668480,
%U A375951 20563762111640910720,1135441077379757372160,66703342626913255770240,4154100873615633462894720
%N A375951 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(5/3).
%F A375951 a(n) = (1/2) * Sum_{k=0..n} A008544(k+1) * |Stirling1(n,k)|.
%t A375951 nmax=17; CoefficientList[Series[1 / (1 + 3 * Log[1-x])^(5/3),{x,0,nmax}],x]*Range[0,nmax]! (* _Stefano Spezia_, Sep 03 2024 *)
%o A375951 (PARI) a008544(n) = prod(k=0, n-1, 3*k+2);
%o A375951 a(n) = sum(k=0, n, a008544(k+1)*abs(stirling(n, k, 1)))/2;
%Y A375951 Cf. A354263, A365575, A375946.
%Y A375951 Cf. A008544.
%K A375951 nonn
%O A375951 0,2
%A A375951 _Seiichi Manyama_, Sep 03 2024