This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375955 #29 Sep 07 2024 16:30:45 %S A375955 1,1,2,1,2,16,1,2,4,4,1,2,16,4,16,1,2,16,4,16,16,1,2,16,4,16,16,52,1, %T A375955 2,8,4,8,8,8,8,1,2,16,4,16,16,52,8,52,1,2,16,4,16,16,16,8,16,16,1,2, %U A375955 16,4,16,16,52,8,52,16,52,1,2,16,4,16,16,16,8,16,16,16,16 %N A375955 T(n,k) for n >= 1, k <= n is the maximum value in the intersection of the Collatz trajectories of n and k, where a trajectory ends when it reaches 1. T(n,k) is a triangle read by rows. %H A375955 Markus Sigg, <a href="/A375955/b375955.txt">Table of n, a(n) for n = 1..11325</a> (row 1..150). %F A375955 T(n,n) = A025586(n). %e A375955 The triangle begins: %e A375955 k=1 2 3 4 5 6 7 8 %e A375955 n=1: 1; %e A375955 n=2: 1, 2; %e A375955 n=3: 1, 2, 16; %e A375955 n=4: 1, 2, 4, 4; %e A375955 n=5: 1, 2, 16, 4, 16; %e A375955 n=6: 1, 2, 16, 4, 16, 16; %e A375955 n=7: 1, 2, 16, 4, 16, 16, 52; %e A375955 n=8: 1, 2, 8, 4, 8, 8, 8, 8; %e A375955 ... %e A375955 T(20,3) = 16 since the trajectory of 20 is (20,10,5,16,8,4,2,1), the trajectory of 3 is (3,10,5,16,8,4,2,1), and their intersection has the maximum 16. This example shows that T(n,k) does not necessarily denote the start of the common trajectory of n and k. %o A375955 (PARI) C(n) = my(L = List([n])); while(n > 1, n = if(n % 2 == 0, n/2, 3*n + 1); listput(L, n)); Set(L); %o A375955 a375955_row(n) = my(Cn = C(n)); vector(n, k, vecmax(setintersect(Cn, C(k)))); %Y A375955 Cf. A025586 (main diagonal) %K A375955 nonn,tabl %O A375955 1,3 %A A375955 _Markus Sigg_, Sep 03 2024