This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375956 #32 Sep 29 2024 13:18:25 %S A375956 2,727,1572751,1081572751801,100210815727518012001, %T A375956 1001410021081572751801200141001, %U A375956 1000141001410021081572751801200141001410001,100001610001410014100210815727518012001410014100016100001,1000005310000161000141001410021081572751801200141001410001610000135000001 %N A375956 a(0) = 2; for n > 0, a(n) is the smallest palindromic prime containing exactly n more digits on each end than a(n-1), with a(n-1) as the central substring. %C A375956 a(32) has 1057 digits. - _Michael S. Branicky_, Sep 29 2024 %H A375956 Michael S. Branicky, <a href="/A375956/b375956.txt">Table of n, a(n) for n = 0..31</a> %e A375956 a(1) = 727, because 727 is prime and no lesser number verify this property. %e A375956 As a triangle: %e A375956 2 %e A375956 727 %e A375956 1572751 %e A375956 1081572751801 %e A375956 100210815727518012001 %e A375956 1001410021081572751801200141001 %e A375956 1000141001410021081572751801200141001410001 %e A375956 100001610001410014100210815727518012001410014100016100001 %e A375956 1000005310000161000141001410021081572751801200141001410001610000135000001 %o A375956 (Python) %o A375956 from itertools import count, islice %o A375956 from sympy import isprime %o A375956 def A375956_gen(): # generator of terms %o A375956 a, l, r = 2, 1, 10 %o A375956 yield 2 %o A375956 for n in count(1): %o A375956 b = 10**n %o A375956 c = b*r %o A375956 for i in count(10**(n-1)): %o A375956 m = c*i+a*b+int(str(i)[::-1]) %o A375956 if isprime(m): %o A375956 yield m %o A375956 a = m %o A375956 l += n<<1 %o A375956 r *= 10**(n<<1) %o A375956 break %o A375956 A375956_list = list(islice(A375956_gen(),20)) # _Chai Wah Wu_, Sep 27 2024 %Y A375956 Cf. A375690. %K A375956 nonn,base %O A375956 0,1 %A A375956 _Jean-Marc Rebert_, Sep 03 2024