This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375959 #46 Sep 19 2024 18:48:37 %S A375959 1,1,3,3,9,45,315,315,945,4725,33075,297675,3274425,42567525, %T A375959 638512875,638512875,1915538625,9577693125,67043851875,603394666875, %U A375959 6637341335625,86285437363125,1294281560446875,22002786527596875,418052944024340625,8779111824511153125,201919571963756521875 %N A375959 Partial products of A006257. %C A375959 Also the determinant of the n X n lower triangular matrix where row j is the Eytzinger array permutation of {1,2,...,j} (A375825), and similarly any lower triangular matrices with A006257 on their diagonal. %C A375959 a(n) = a(n-1) iff n = 2^k, since those n are where A006257(n) = 1. - _Stefano Spezia_, Sep 06 2024 %H A375959 Sergey Slotin, <a href="https://algorithmica.org/en/eytzinger">Eytzinger binary search</a>. %F A375959 a(n) = Product_{k=1..n} A006257(k). %e A375959 For n = 9, a(9) = 1*1*3*1*3*5*7*1*3 = 945. %t A375959 Table[Product[Flatten[Table[Range[1, 2^n - 1, 2], {n, 1, 6}]][[i]],{i,n}],{n,1,27}] (* _James C. McMahon_, Sep 19 2024 *) %o A375959 (Python) %o A375959 from sympy import prod %o A375959 a = lambda n: prod(((j-(1 << j.bit_length()-1))<<1)+1 for j in range(1, n+1)) %o A375959 print([a(n) for n in range(1, 28)]) %o A375959 (PARI) a(n) = prod(k=1, n, 2*k-2^logint(2*k, 2)+1); \\ _Michel Marcus_, Sep 06 2024 %Y A375959 Cf. A006257, A375825. %K A375959 nonn,easy %O A375959 1,3 %A A375959 _DarĂo Clavijo_, Sep 03 2024