This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375970 #13 Sep 06 2024 20:16:22 %S A375970 1,1,1,1,1,1,2,2,1,1,1,5,3,1,2,2,1,1,1,1,1,1,2,70,5,3,3,1,1,1,4,4,1,1, %T A375970 1,1,5,1,2,6,1,1,1,1,1,1,2,14,35,5,1,1,3,3,2,2,1,1,1,11,1,5,4,4,1,1,3, %U A375970 1,1,1,2,2,7,5,5,1,1,1,2,6,3,1,1,13,1,1,10,2,1,1,1,1,1,3,4,4,7 %N A375970 a(n) is the largest number k such that k^2 divides the square pyramidal number A000330(n). %C A375970 a(n)^2 is the largest square that divides n*(n+1)*(2*n+1)/6. %H A375970 Robert Israel, <a href="/A375970/b375970.txt">Table of n, a(n) for n = 1..10000</a> %F A375970 a(n) = A000188(A000330(n)). %e A375970 a(12) = 5 because A000330(12) = 650 = 2 * 5^2 = 13 and 5^2 is the largest square dividing 650. %p A375970 g:= proc(n) local t,s,F; t:= n*(n+1)*(2*n+1)/6; %p A375970 F:= ifactors(t)[2]; %p A375970 mul(s[1]^floor(s[2]/2), s=F) %p A375970 end proc: %p A375970 map(g, [$1..100]); %o A375970 (PARI) a(n) = my(m=n*(n+1)*(2*n+1)/6); sqrtint(m/core(m)); \\ _Michel Marcus_, Sep 06 2024 %Y A375970 Cf. A000188, A000330, A119356, A375971, A375973. %K A375970 nonn %O A375970 1,7 %A A375970 _Robert Israel_, Sep 04 2024