This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375973 #18 Sep 14 2024 06:49:39 %S A375973 1,2,5,70,99,195,240,323,2378,2716,15015,48505,80782,130662,510068, %T A375973 672210,1926615,2744210,4116315,10278759,31320850,87347695,93222358, %U A375973 155904960,177385520,189539896,250637778,272607725,486471832,647562465,1620820270 %N A375973 Record values in A375970. %C A375973 a(n) is the largest number whose square divides A000330(A375971(n)). %F A375973 a(n) = A375970(A375971(n)). %e A375973 a(3) = 5 because A375971(3) = 650 and 5^2 is the largest square dividing 650. %e A375973 From _David A. Corneth_, Sep 13 2024: (Start) %e A375973 70 is in the sequence as A000330(24) = 24 * 25 * 49 / 6 = 4 * 25 * 49. The largest square dividing 4 is 4, the largest square dividing 25 is 25 and the largest square dividing 49 is 49. %e A375973 So the largest k such that k^2 divides 4 * 25 * 49 is sqrt(4)*sqrt(25)*sqrt(49) = 2*5*7 = 70, a record. (End) %p A375973 g:= proc(n) local t, s, F; t:= n*(n+1)*(2*n+1)/6; %p A375973 F:= ifactors(t)[2]; %p A375973 mul(s[1]^floor(s[2]/2), s=F) %p A375973 end proc: %p A375973 V:= NULL; m:= 0: count:= 0: %p A375973 for k from 1 while count < 20 do %p A375973 v:= g(k); %p A375973 if v > m then m:= v; V:= V,v; count:= count+1; fi %p A375973 od: %p A375973 V; %Y A375973 Cf. A000330, A375970, A375971. %K A375973 nonn %O A375973 1,2 %A A375973 _Robert Israel_, Sep 04 2024 %E A375973 a(25) from _Michael S. Branicky_, Sep 06 2024 %E A375973 a(26)-a(31) from _David A. Corneth_, Sep 08 2024