A375980 Number of subsets of {1,2,...,n} such that no two elements differ by 1, 2, or 5.
1, 2, 3, 4, 6, 9, 12, 17, 25, 35, 49, 71, 101, 142, 203, 290, 410, 583, 832, 1181, 1677, 2389, 3397, 4825, 6865, 9766, 13879, 19736, 28074, 39913, 56748, 80709, 114765, 163175, 232045, 329975, 469189, 667178, 948743, 1349062, 1918310, 2727839, 3878912, 5515657
Offset: 0
Examples
For n = 6, the 12 subsets are {}, {1}, {2}, {3}, {4}, {1,4}, {5}, {1,5}, {2,5}, {6}, {2,6}, {3,6}.
Links
- Michael A. Allen, Combinations without specified separations, Communications in Combinatorics and Optimization (in press).
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,-1,1).
- Index entries for subsets of {1,..,n} with disallowed differences
Crossrefs
Column k=19 of A376033.
Programs
-
Mathematica
CoefficientList[Series[(1 + x + x^2 + x^5)/(1 - x - x^3 + x^5 - x^6),{x,0,42}],x] LinearRecurrence[{1, 0, 1, 0, -1, 1}, {1, 2, 3, 4, 6, 9}, 43]
Formula
a(n) = a(n-1) + a(n-3) - a(n-5) + a(n-6) for n >= 6.
G.f.: (1 + x)*(1 + x^2 - x^3 + x^4)/(1 - x - x^3 + x^5 - x^6).