cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375981 Number of subsets of {1,2,...,n} such that no two elements differ by 1, 4, or 5.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 14, 19, 25, 34, 49, 70, 99, 141, 196, 270, 375, 520, 723, 1014, 1420, 1985, 2777, 3874, 5396, 7526, 10496, 14642, 20449, 28555, 39860, 55647, 77660, 108356, 151214, 211028, 294507, 411071, 573763, 800796, 1117679, 1559895, 2177002
Offset: 0

Views

Author

Michael A. Allen, Sep 04 2024

Keywords

Comments

a(n) is the number of compositions of n+5 into parts 1, 6, 8, 9, 12, 15, 18, 21, ...

Examples

			For n = 6, the 14 subsets are {}, {1}, {2}, {3}, {1,3}, {4}, {1,4}, {2,4}, {5}, {2,5}, {3,5}, {6}, {3,6}, {4,6}.
The a(4) = 8 compositions of 9 into parts 1, 6, 8, 9, ... are 1+1+1+1+1+1+1+1+1, 1+1+1+6, 1+1+6+1, 1+6+1+1, 6+1+1+1, 1+8, 8+1, 9.
		

Crossrefs

See comments for other sequences related to restricted combinations.
Cf. A376743.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 - x^8 - x^9 - x^10)/(1 - x - x^3 + x^4 - x^6 - x^8 + x^11),{x,0,42}],x]
    LinearRecurrence[{1, 0, 1, -1, 0, 1, 0, 1, 0, 0, -1}, {1, 2, 3, 5, 8, 11, 14, 19, 25, 34, 49}, 42]

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-6) + a(n-8) - a(n-11) for n >= 11.
G.f.: (1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 - x^8 - x^9 - x^10)/(1 - x - x^3 + x^4 - x^6 - x^8 + x^11).