A375984 Number of subsets of {1,2,...,n} such that no two elements differ by 3, 4, or 5.
1, 2, 4, 8, 12, 16, 20, 25, 33, 49, 77, 121, 181, 258, 356, 488, 680, 976, 1432, 2113, 3089, 4449, 6329, 8961, 12729, 18226, 26292, 38056, 55012, 79200, 113548, 162425, 232401, 333201, 478853, 689177, 991949, 1426322, 2048244, 2938696, 4215552, 6049984, 8688816
Offset: 0
Examples
For n = 6, the 20 subsets are {}, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}, {4}, {2,4}, {3,4}, {2,3,4}, {5}, {3,5}, {4,5}, {3,4,5}, {6}, {4,6}, {5,6}, {4,5,6}.
Links
- Michael A. Allen, Combinations without specified separations, Communications in Combinatorics and Optimization (in press).
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,1,2).
- Index entries for subsets of {1,..,n} with disallowed differences
Crossrefs
Column k=28 of A376033.
Programs
-
Mathematica
CoefficientList[Series[(1 + x + 2*x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 3*x^6 + 2*x^7)/(1 - x - x^6 - x^7 - 2*x^8),{x,0,40}],x] LinearRecurrence[{1, 0, 0, 0, 0, 1, 1, 2}, {1, 2, 4, 8, 12, 16, 20, 25}, 41]
Formula
a(n) = a(n-1) + a(n-6) + a(n-7) + 2*a(n-8) for n >= 8.
G.f.: (1 + x + 2*x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 3*x^6 + 2*x^7)/((1 + x)(1 + x^2)(1 - 2*x + x^2 + x^4 - 2*x^5)).