cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375991 Expansion of e.g.f. (3 - 2 * exp(x))^(3/2).

This page as a plain text file.
%I A375991 #15 May 20 2025 02:02:23
%S A375991 1,-3,0,9,45,252,1935,19989,260190,4063887,73823445,1527002694,
%T A375991 35408499885,909389617497,25618701424680,785355764569749,
%U A375991 26024092206299505,926859918577582332,35306305954587340515,1432301360556686816529,61649353087003554947550
%N A375991 Expansion of e.g.f. (3 - 2 * exp(x))^(3/2).
%F A375991 a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (2*j-3)) * Stirling2(n,k).
%F A375991 a(n) ~ 3^(5/2) * n^(n-2) / (2^(3/2) * exp(n) * log(3/2)^(n - 3/2)). - _Vaclav Kotesovec_, May 20 2025
%t A375991 With[{nn=20},CoefficientList[Series[(3-2Exp[x])^(3/2),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, May 19 2025 *)
%o A375991 (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 2*j-3)*stirling(n, k, 2));
%Y A375991 Cf. A004123, A305404, A367470, A375948, A375954.
%Y A375991 Cf. A006681.
%K A375991 sign,easy
%O A375991 0,2
%A A375991 _Seiichi Manyama_, Sep 05 2024