cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375995 Number of subwords of the form UUUU in nondecreasing Dyck paths of length 2n.

This page as a plain text file.
%I A375995 #38 Mar 04 2025 08:35:48
%S A375995 0,0,0,0,1,7,30,109,365,1164,3593,10835,32106,93845,271321,777432,
%T A375995 2211025,6248479,17562870,49132669,136884293,379975140,1051356761,
%U A375995 2900587115,7981564866,21911096357,60021530545,164095925424,447823729825,1220105286199,3319124711118
%N A375995 Number of subwords of the form UUUU in nondecreasing Dyck paths of length 2n.
%C A375995 A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
%H A375995 E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170 (1997), 211-217.
%H A375995 Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
%H A375995 Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Florez/florez51.html">Counting Subwords in Non-Decreasing Dyck Paths</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 15, 19.
%H A375995 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
%H A375995 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6, -11, 6, -1).
%F A375995 a(n) = (2(n-3)*L(2 n-5)-3F(2n-6))/5 for n>=3 and a(n) = 0 for n<=2, F(.) is a Fibonacci number, L(.) is a Lucas number.
%F A375995 G.f.: x^4*(-x^2+x+1)/(x^2-3x+1)^2.
%t A375995 Table[If[n<=2,0,(2(n-3)LucasL[2n-5]-3Fibonacci[2n-6])/5], {n,0,30}]
%Y A375995 Cf. A000032, A000045, A377679, A377670.
%K A375995 nonn,easy
%O A375995 0,6
%A A375995 _Rigoberto Florez_, Nov 03 2024