This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376001 #7 Sep 11 2024 00:45:58 %S A376001 1,105,1176,4950,5713890 %N A376001 Numbers that can be written as a Narayana number (A001263) in at least 3 ways. %C A376001 The first 5 terms are triangular numbers. %C A376001 a(2), ..., a(5) can all be written as a Narayana number in exactly 4 ways. %C A376001 a(6) > 2*10^35 (if it exists). %e A376001 With T(n,k) = A001263(n,k): %e A376001 105 = T( 7,3) = T( 7, 5) = T( 15,2) = T( 15, 14); %e A376001 1176 = T( 9,4) = T( 9, 6) = T( 49,2) = T( 49, 48); %e A376001 4950 = T(11,4) = T(11, 8) = T( 100,2) = T( 100, 99); %e A376001 5713890 = T(92,3) = T(92,90) = T(3381,2) = T(3381,3380). %o A376001 (Python) %o A376001 from math import isqrt %o A376001 from bisect import insort %o A376001 from itertools import islice %o A376001 def A010054(n): %o A376001 return isqrt(m:=8*n+1)**2 == m %o A376001 def A376001_generator(): %o A376001 yield 1 %o A376001 nkN_list = [(5, 3, 20)] # List of triples (n, k, A001263(n, k)), sorted by the last element. %o A376001 while 1: %o A376001 N0 = nkN_list[0][2] %o A376001 c = 0 %o A376001 while 1: %o A376001 n, k, N = nkN_list[0] %o A376001 if N > N0: %o A376001 if c >= 3 or A010054(N0): yield N0 %o A376001 break %o A376001 central = n==2*k-1 %o A376001 c += 2-central %o A376001 del nkN_list[0] %o A376001 insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2]) %o A376001 if central: %o A376001 insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2]) %o A376001 def A376001_list(nmax): %o A376001 return list(islice(A376001_generator(),nmax)) %Y A376001 Cf. A000217, A001263, A003015, A374796, A375573, A375999, A376000. %K A376001 nonn,more %O A376001 1,2 %A A376001 _Pontus von Brömssen_, Sep 06 2024