This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376004 #38 Sep 29 2024 15:11:52 %S A376004 1,1,1,1,1,1,2,1,0,1,1,2,1,0,1,2,1,1,2,0,1,3,2,1,2,-1,0,1,5,3,1,1,-1, %T A376004 -1,-1,1,1,5,3,1,1,-1,-1,-1,1,2,1,4,4,1,2,-2,0,0,1,3,2,1,5,1,2,3,-1, %U A376004 -1,0,1,5,3,1,1,2,2,2,4,-1,-1,-1,1,5,5,3,1,1,3,3,3,-3,-1,-1,-1,1 %N A376004 Limiting matrix {m_n}, where m_0 = 1 and m_{i+1} = [[m_i, A(m_i)], [B(m_i), C(m_i)]], read by antidiagonals, and A adds the corresponding x-coords to every element, B subtracts it, and C adds the corresponding y-coords. %C A376004 Start with M_0 = [[1]]. M_n is a 2^n X 2^n matrix. M_{n+1} is constructed from M_n as follows: %C A376004 | M_n A(M_n) | %C A376004 M_{n+1} = | | %C A376004 | B(M_n) C(M_n) | %C A376004 A - adds the corresponding x-coords to the elements of the matrix %C A376004 B - subtracts the corresponding x-coords to the elements of the matrix %C A376004 C - adds the corresponding y-coords to the elements of the matrix %C A376004 The coordinate system sets the top-left corner to be (0, 0). %C A376004 Then we take the limiting matrix {M_n}, and turn it into an integer sequence by reading it by antidiagonals. %H A376004 Bryle Morga, <a href="/A376004/b376004.txt">Table of n, a(n) for n = 1..10000</a> %H A376004 Bryle Morga, <a href="/A376004/a376004.png">Visualization of the first 2 million terms.</a> %e A376004 M_0 = [1] by definition. Constructing M_1 goes as follows: %e A376004 A(M_0) = M_0 + [0] = [1] %e A376004 B(M_0) = M_0 - [0] = [1] %e A376004 C(M_0) = M_0 + [0] = [1] %e A376004 So we have: %e A376004 | 1 1 | %e A376004 M_1 = | 1 1 | %e A376004 From this M_2 can be constructed: %e A376004 A(M_2) = M_1+[[0, 1],[0, 1]] = [[1, 2], [1, 2]] %e A376004 B(M_2) = M_1-[[0, 1],[0, 1]] = [[1, 0], [1, 0]] %e A376004 C(M_2) = M_1+[[0, 0],[1, 1]] = [[1, 1], [2, 2]] %e A376004 | 1 1 1 2 | %e A376004 | 1 1 1 2 | %e A376004 M_2 = | 1 0 1 1 | %e A376004 | 1 0 2 2 | %o A376004 (Python) %o A376004 def expand(m): %o A376004 i = len(m) %o A376004 res = [[0 for _ in range(2*i)] for _ in range(2*i)] %o A376004 for x in range(i): %o A376004 for y in range(i): %o A376004 res[y][x] = m[y][x] %o A376004 res[y][x+i] = m[y][x] + x %o A376004 res[y+i][x] = m[y][x] - x %o A376004 res[y+i][x+i] = m[y][x] + y %o A376004 return res %o A376004 a = [] %o A376004 m = [[1]] %o A376004 for _ in range(11): %o A376004 m = expand(m) %o A376004 for i in range(len(m)): %o A376004 for j in range(i+1): %o A376004 a.append(m[j][i-j]) %K A376004 sign,look,tabl %O A376004 1,7 %A A376004 _Bryle Morga_, Sep 05 2024