This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376006 #7 Sep 06 2024 20:17:58 %S A376006 2,4,12,21,929,938,9500,99204,9990074,99999981142,999999998621256, %T A376006 99999999999999896026031 %N A376006 Record values in A032662. %C A376006 a(n) is the least k for which the concatenation k || k + A376002(n) is prime. %F A376006 a(n) = A032662(A376002(n)). %e A376006 a(5) = 929 because A376002(5) = 84 and A032662(84) = 929. Thus 84 + 929 = 1013, the concatenation 9291013 is prime, the concatenations k || k+84 are composite for 1 <= k < 929, and for every m < 84 there is k < 929 where k || k+m is prime. %p A376006 tcat:= (a, b) -> a*10^(1+ilog10(b))+b: %p A376006 f:= proc(n) local k, k0, d; %p A376006 for d from ilog10(n)+1 do %p A376006 if igcd(10^d+1, n) = 1 then %p A376006 k0:= max(1, 10^(d-1)-n); %p A376006 if (k0+n)::even then k0:= k0+1 fi; %p A376006 for k from k0 to 10^d-n-1 by 2 do %p A376006 if isprime(tcat(k, k+n)) then return k fi %p A376006 od fi od %p A376006 end proc: %p A376006 V:= NULL: m:= 0: count:= 0: %p A376006 for i from 1 while count < 11 do %p A376006 v:= f(i); %p A376006 if v > m then %p A376006 count:= count+1; m:= v; V:= V, v; %p A376006 fi; %p A376006 od: %p A376006 V; %Y A376006 Cf. A032662, A376002. %K A376006 nonn,base,more %O A376006 1,1 %A A376006 _Robert Israel_, Sep 05 2024