This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376017 #17 Sep 06 2024 14:08:02 %S A376017 1,2,3,5,5,12,7,32,10,90,11,264,13,686,105,1809,17,5166,19,11560,2856, %T A376017 28182,23,81456,26,159770,61263,375004,29,1122660,31,1984032,1082598, %U A376017 4456482,560,14486329,37,22413350,16888053,50674560,41,174582072,43,247627820,241884450 %N A376017 a(n) = Sum_{d|n} d^(n/d - d) * binomial(n/d,d). %H A376017 Seiichi Manyama, <a href="/A376017/b376017.txt">Table of n, a(n) for n = 1..5000</a> %F A376017 G.f.: Sum_{k>=1} x^(k^2) / (1 - k*x^k)^(k+1). %F A376017 If p is prime, a(p) = p. %o A376017 (PARI) a(n) = sumdiv(n, d, d^(n/d-d)*binomial(n/d, d)); %o A376017 (PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, x^k^2/(1-k*x^k)^(k+1))) %o A376017 (Python) %o A376017 from math import comb %o A376017 from itertools import takewhile %o A376017 from sympy import divisors %o A376017 def A376017(n): return sum(d**((m:=n//d)-d)*comb(m,d) for d in takewhile(lambda d:d**2<=n,divisors(n))) # _Chai Wah Wu_, Sep 06 2024 %Y A376017 Cf. A318636. %K A376017 nonn %O A376017 1,2 %A A376017 _Seiichi Manyama_, Sep 06 2024