This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376018 #14 Sep 06 2024 14:08:24 %S A376018 1,1,1,5,1,9,1,13,28,17,1,102,1,25,163,285,1,303,1,1061,406,41,1,3172, %T A376018 3126,49,757,5173,1,16654,1,9021,1216,65,46876,62546,1,73,1783,130956, %U A376018 1,282123,1,30805,221208,89,1,1024944,823544,393847,3241,56421,1,2616513 %N A376018 a(n) = Sum_{d|n} d^d * binomial(n/d-1,d-1). %F A376018 G.f.: Sum_{k>=1} ( k*x^k / (1 - x^k) )^k. %F A376018 If p is prime, a(p) = 1. %o A376018 (PARI) a(n) = sumdiv(n, d, d^d*binomial(n/d-1, d-1)); %o A376018 (PARI) my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, (k*x^k/(1-x^k))^k)) %o A376018 (Python) %o A376018 from math import comb %o A376018 from itertools import takewhile %o A376018 from sympy import divisors %o A376018 def A376018(n): return sum(d**d*comb(n//d-1,d-1) for d in takewhile(lambda d:d**2<=n,divisors(n))) # _Chai Wah Wu_, Sep 06 2024 %Y A376018 Cf. A143862, A376014. %K A376018 nonn %O A376018 1,4 %A A376018 _Seiichi Manyama_, Sep 06 2024