This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376019 #14 Sep 06 2024 14:13:02 %S A376019 1,1,1,17,1,129,1,769,19684,4097,1,1614804,1,98305,86093443, %T A376019 4295426049,1,3876302043,1,4398055948289,156905298046,41943041,1, %U A376019 2820680971922038,298023223876953126,805306369,213516729579637,1441151884248219649,1 %N A376019 a(n) = Sum_{d|n} d^n * binomial(n/d-1,d-1). %F A376019 G.f.: Sum_{k>=1} ( (k*x)^k / (1 - (k*x)^k) )^k. %F A376019 If p is prime, a(p) = 1. %o A376019 (PARI) a(n) = sumdiv(n, d, d^n*binomial(n/d-1, d-1)); %o A376019 (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, ((k*x)^k/(1-(k*x)^k))^k)) %o A376019 (Python) %o A376019 from math import comb %o A376019 from itertools import takewhile %o A376019 from sympy import divisors %o A376019 def A376019(n): return sum(d**n*comb(n//d-1,d-1) for d in takewhile(lambda d:d**2<=n,divisors(n))) # _Chai Wah Wu_, Sep 06 2024 %Y A376019 Cf. A023887, A376015. %K A376019 nonn %O A376019 1,4 %A A376019 _Seiichi Manyama_, Sep 06 2024