A376028 Zeckendorf-Niven numbers (A328208) with a record gap to the next Zeckendorf-Niven number.
1, 6, 18, 30, 36, 48, 208, 5298, 6132, 6601, 8280, 12228, 17052, 68220, 113990, 120504, 438570, 1015416, 1343232, 1848400, 5338548, 12727143, 83877810, 330963120, 409185360, 418561770, 2428646640, 2834120595, 2876557200, 2940992640, 7218753758, 7306145012, 7609637140
Offset: 1
Examples
6 is a term since it is a Zeckendorf-Niven number, and the next Zeckendorf-Niven number is 8, with a gap 8 - 6 = 2, which is a record since all the numbers below 6 are also Zeckendorf-Niven numbers.
References
- Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..42
- Amiram Eldar, Table of n, a(n), gap(n) for n = 1..42
- Andrew Ray and Curtis Cooper, On the natural density of the k-Zeckendorf Niven numbers, J. Inst. Math. Comput. Sci. Math., Vol. 19 (2006), pp. 83-98.
Programs
-
Mathematica
z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; znQ[n_] := Divisible[n, z[n]]; seq[kmax_] := Module[{gapmax = 0, gap, k1 = 1, s = {}}, Do[If[znQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^4]
Comments