This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376030 #15 Sep 27 2024 13:42:53 %S A376030 13,17,31,37,71,73,79,97,107,113,131,137,139,149,157,163,167,173,179, %T A376030 181,191,193,197,199,239,241,251,277,281,283,293,311,313,317,331,337, %U A376030 347,349,359,373,379,389,397,419,421,439,457,461,463,467,491,521,547,563 %N A376030 Primes which can be turned into a different prime by exchanging two digits. (Leading zeros are not allowed.) %H A376030 Michael S. Branicky, <a href="/A376030/b376030.txt">Table of n, a(n) for n = 1..10000</a> %e A376030 13 is the first term, since 31 is also prime. 113 is a term, since 131 is prime. 101 is not allowed as a term: 011 is prime, but has a leading zero. %o A376030 (Python) %o A376030 from sympy import isprime %o A376030 from itertools import combinations %o A376030 def ok(n): %o A376030 if not isprime(n): return False %o A376030 s = list(str(n)) %o A376030 for i, j in combinations(range(len(s)), 2): %o A376030 sij = s[:] %o A376030 sij[i], sij[j] = sij[j], sij[i] %o A376030 if sij[0] != "0" and sij != s and isprime(int("".join(sij))): %o A376030 return True %o A376030 return False %o A376030 print([k for k in range(565) if ok(k)]) # _Michael S. Branicky_, Sep 07 2024 %Y A376030 Subsequence of A225035. %Y A376030 Cf. A375965. %K A376030 base,nonn %O A376030 1,1 %A A376030 _James S. DeArmon_, Sep 06 2024 %E A376030 Corrected and more terms from _Michael S. Branicky_, Sep 07 2024