This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376035 #14 Sep 10 2024 06:02:29 %S A376035 0,1,7,118,3205,120466,5790619,339216046,23443311049,1867308836986, %T A376035 168435092561671,16971155810393302,1889194092179682061, %U A376035 230257485553145337106,30496977601634473249363,4361533380688447142658046,669865656003334085318195089 %N A376035 E.g.f. satisfies A(x) = exp(x / (1 - A(x))^3) - 1. %H A376035 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A376035 E.g.f.: Series_Reversion( (1 - x)^3 * log(1+x) ). %F A376035 a(n) = Sum_{k=1..n} (3*n+k-2)!/(3*n-1)! * Stirling2(n,k). %F A376035 a(n) ~ 3^(4*n-2) * LambertW(2*exp(1/3)/3)^(3*n-1) * n^(n-1) / (sqrt(1 + LambertW(2*exp(1/3)/3)) * exp(n) * 2^(3*n-1) * (3*LambertW(2*exp(1/3)/3) - 1)^(4*n-1)). - _Vaclav Kotesovec_, Sep 10 2024 %t A376035 Table[Sum[(3*n+k-2)!/(3*n-1)! * StirlingS2[n,k], {k,1,n}], {n,0,20}] (* _Vaclav Kotesovec_, Sep 10 2024 *) %o A376035 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(serreverse((1-x)^3*log(1+x))))) %o A376035 (PARI) a(n) = sum(k=1, n, (3*n+k-2)!/(3*n-1)!*stirling(n, k, 2)); %Y A376035 Cf. A274265, A376034, A376036. %Y A376035 Cf. A052892, A371371. %K A376035 nonn %O A376035 0,3 %A A376035 _Seiichi Manyama_, Sep 07 2024