cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376041 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) / (1 - A(x)).

This page as a plain text file.
%I A376041 #14 Sep 08 2024 13:48:07
%S A376041 0,1,9,191,6496,305164,18317390,1339293822,115492112640,
%T A376041 11476262240520,1291250885222592,162271449317302632,
%U A376041 22528350072978189600,3424249337820235241472,565573503590604522245136,100864333223422171393303488,19317041144591537348567168256
%N A376041 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) / (1 - A(x)).
%H A376041 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A376041 a(n) = Sum_{k=1..n} (3*n+2*k-2)!/(3*n+k-1)! * |Stirling1(n,k)|.
%F A376041 E.g.f.: Series_Reversion( (1 - x)^3 * (1 - exp(-x * (1 - x))) ).
%o A376041 (PARI) a(n) = sum(k=1, n, (3*n+2*k-2)!/(3*n+k-1)!*abs(stirling(n, k, 1)));
%Y A376041 Cf. A376038, A376039, A376040.
%Y A376041 Cf. A052851, A371327, A376042.
%Y A376041 Cf. A376036.
%K A376041 nonn
%O A376041 0,3
%A A376041 _Seiichi Manyama_, Sep 07 2024