cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376042 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^2)) / (1 - A(x)).

This page as a plain text file.
%I A376042 #14 Sep 08 2024 13:48:12
%S A376042 0,1,7,116,3092,114034,5378396,309151968,20964872624,1638608258904,
%T A376042 145038615271512,14340344355439200,1566483453363376896,
%U A376042 187355848936261332144,24351019737412176648576,3417500066845923960657408,515071814323666902383222784
%N A376042 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^2)) / (1 - A(x)).
%H A376042 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A376042 a(n) = Sum_{k=1..n} (2*n+2*k-2)!/(2*n+k-1)! * |Stirling1(n,k)|.
%F A376042 E.g.f.: Series_Reversion( (1 - x)^2 * (1 - exp(-x * (1 - x))) ).
%o A376042 (PARI) a(n) = sum(k=1, n, (2*n+2*k-2)!/(2*n+k-1)!*abs(stirling(n, k, 1)));
%Y A376042 Cf. A052851, A371327, A376041.
%K A376042 nonn
%O A376042 0,3
%A A376042 _Seiichi Manyama_, Sep 07 2024